当前位置:看书谷>其他类型>从学霸开始打造黑科技帝国> 第59章IMO考试正式开始
阅读设置(推荐配合 快捷键[F11] 进入全屏沉浸式阅读)

设置X

第59章IMO考试正式开始(2 / 2)

作上标记,使得板上的任意正方格(作上标记的或者没有作.上标记的)都与至少一个作上标记的正方格相邻。

确定N的最小值。

这题确实是有难度。

不然也不会放在一试的第三题了。

但这题的难度又绝对到不了最难,那么这样看来估计今年IMO的压轴题应该是在二试了。

不过也可以理解,如果一试就把最难的一题给放出来了岂不是没了意思。

并且这个第三题还是很有意思的,楚皓也在草稿纸上涂了一个图形帮助解题。

解:设n=2k,首先将正方板黑白相间地涂成像国际象棋盘那样。

设f(n)为所求的N的最小值,fᵤ(n)为必须作上标记的白格子的最小数目,使得任一黑格子都有一个作上标记的白格子与之相邻。

同样地,定义fb(n)为必须作上标记的集格子的最小数目,使得任一白格子都有一个作上标记的黑格子与之相邻。

由于n为偶数,“棋盘“是对称的,故有:

fᵤ(n)=fb(n),

f(n)=fw(n)+fb(n)……

这一题的解答过程稍微有些长,并且还需要画图作为辅助,所以楚皓做起来也比较费时间。

因此,f(n)=k(k+1)。

停笔检查,完毕后楚皓看了一眼时间,当地时间十一点零七,又是两个小时以内完成答题!

交卷走出考场,楚皓没有一丝留念,只给一众外国选手留下了一个传说般的背影。

上一页 目录 +书签 下一章